Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
5.
Transfusion ; 61 Suppl 1: S313-S325, 2021 07.
Article in English | MEDLINE | ID: covidwho-1358635

ABSTRACT

BACKGROUND: The current global pandemic has created unprecedented challenges in the blood supply network. Given the recent shortages, there must be a civilian plan for massively bleeding patients when there are no blood products on the shelf. Recognizing that the time to death in bleeding patients is less than 2 h, timely resupply from unaffected locations is not possible. One solution is to transfuse emergency untested whole blood (EUWB), similar to the extensive military experience fine-tuned over the last 19 years. While this concept is anathema in current civilian transfusion practice, it seems prudent to have a vetted plan in place. METHODS AND MATERIALS: During the early stages of the 2020 global pandemic, a multidisciplinary and international group of clinicians with broad experience in transfusion medicine communicated routinely. The result is a planning document that provides both background information and a high-level guide on how to emergently deliver EUWB for patients who would otherwise die of hemorrhage. RESULTS AND CONCLUSIONS: Similar plans have been utilized in remote locations, both on the battlefield and in civilian practice. The proposed recommendations are designed to provide high-level guidance for experienced blood bankers, transfusion experts, clinicians, and health authorities. Like with all emergency preparedness, it is always better to have a well-thought-out and trained plan in place, rather than trying to develop a hasty plan in the midst of a disaster. We need to prevent the potential for empty shelves and bleeding patients dying for lack of blood.


Subject(s)
Blood Banks , Blood Banks/methods , Blood Preservation/methods , Blood Transfusion/methods , COVID-19/epidemiology , Civil Defense , Emergency Service, Hospital , Humans , Pandemics
6.
Stem Cells Transl Med ; 10(6): 883-894, 2021 06.
Article in English | MEDLINE | ID: covidwho-1060671

ABSTRACT

While mesenchymal stromal cells are an appealing therapeutic option for a range of clinical applications, their potential to induce clotting when used systemically remains a safety concern, particularly in hypercoagulable conditions, such as in patients with severe COVID-19, trauma, or cancers. Here, we tested a novel preclinical approach aimed at improving the safety of mesenchymal stromal cell (MSC) systemic administration by use of a bioreactor. In this system, MSCs are seeded on the exterior of a hollow-fiber filter, sequestering them behind a hemocompatible semipermeable membrane with defined pore-size and permeability to allow for a molecularly defined cross talk between the therapeutic cells and the whole blood environment, including blood cells and signaling molecules. The potential for these bioreactor MSCs to induce clots in coagulable plasma was compared against directly injected "free" MSCs, a model of systemic administration. Our results showed that restricting MSCs exposure to plasma via a bioreactor extends the time necessary for clot formation to occur when compared with "free" MSCs. Measurement of cell surface data indicates the presence of known clot inducing factors, namely tissue factor and phosphatidylserine. Results also showed that recovering cells and flushing the bioreactor prior to use further prolonged clot formation time. Furthermore, application of this technology in two in vivo models did not require additional heparin in fully anticoagulated experimental animals to maintain target activated clotting time levels relative to heparin anticoagulated controls. Taken together the clinical use of bioreactor housed MSCs could offer a novel method to control systemic MSC exposure and prolong clot formation time.


Subject(s)
Bioreactors , COVID-19/therapy , Cell Culture Techniques/methods , Mesenchymal Stem Cell Transplantation/methods , Thrombosis/prevention & control , Animals , Anticoagulants/pharmacology , Blood Coagulation Tests , Bone Marrow Cells/cytology , Cells, Cultured , Dogs , Heparin/pharmacology , Humans , Male , Membranes, Artificial , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/prevention & control , SARS-CoV-2 , Swine
SELECTION OF CITATIONS
SEARCH DETAIL